
Carnegie Mellon
Software Engineering Institute

Replaceable Components and
the Service Provider Interface

Robert Seacord
Lutz Wrage

July 2002

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited

COTS-Based Systems

20020724 201
Technical Note

CMU/SEI-2002-TN-009

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Note
CMU/SEI-2002-TN-009

Replaceable Components and
the Service Provider Interface

Robert Seacord
Lutz Wrage

July 2002

COTS-Based Systems

Unlimited distribution subject to the copyright.

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 2002 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS^IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Contents

Abstract v"

1 Introduction 1

2 Replaceable Components 3
2.1 Physical Systems 3

2.2 Software Systems 4

2.3 Component Model Properties 6

3 Component Models 8
3.1 Enterprise JavaBeans 8

3.2 JavaBeans 8

3.3 COM 9

4 Service Provider Interfaces 10
4.1 Data Access with Java Database Connectivity 10

4.2 Java Cryptography Extension 14

4.3 Java Naming and Directory Interface 17

4.4 Java API for XML Processing 20

5 SPI Comparison 22
5.1 Market 23

6 Component Model Comparison 25

References 27

CMU/SEI-2002-TN-009

CMU/SEI-2002-TN-009

List of Figures

Figure 1: The JDBC Architecture Consisting of an API and a JDBC Driver 12
Figure 2: The JDNI Architecture Consisting of Both an API and an SPI 17
Figure 3: A Composite Namespace 19

CMU/SEI-2002-TN-009

iv CMU/SEI-2002-TN-009

List of Tables

Table 1: Properties of Different SPIs 23

CMU/SEI-2002-TN-009

vi CMU/SEI-2002-TN-009

Abstract

Several popular component-based standards have emerged recently, including JavaBeans®
and Enterprise JavaBeans® from Sun Microsystems and the Component Object Model from
Microsoft. These component models are being adopted for use in software development, as
they eliminate opportunities for architectural mismatch and are supported by standard
services. A highly touted property of component models is that they support the development
of replaceable components. Unfortunately, a robust, commercial marketplace of replaceable

components has not been established for any of these component models.

On the other hand, the properties of the Service Provider Interface (SPI), used in many Java
language packages, have resulted in the development of reusable components in several
technology areas. Examples of successful SPI packages include Java Database Connectivity,
Java Cryptography Extension, Java Naming and Directory Interface, and the Java Application

Program Interface for XML Processing.

This technical note considers the motivation for using replaceable components and defines
the requirements of replaceable component models. It evaluates the properties of standard
component models and the SPI approach that affect their ability to support replaceable

components.

JavaBeans and Enterprise JavaBeans are registered trademarks of Sun Microsystems.

CMU/SEI-2002-TN-009 vn

Vjjj CMU/SEI-2002-TN-009

1 Introduction

A highly touted property of components and component-based software engineering is the
ability to treat components as fully replaceable units. Philippe Krutchen of Rational
Software, for example, has defined a software component as a nontrivial, nearly independent,
and replaceable part of a system that fulfills a clear function in the context of a well-defined

architecture [Krachten 98].

Beyond eliminating some forms of architectural mismatch, commercially successful
component models such as JavaBeans®, Enterprise JavaBeans (EJB)®, and Component
Object Model (COM)' do little to support or encourage components as replaceable units.
These component models do not impose any kind of functional interfaces on conforming
components. Consequently, replaceable components that implement these component models
have not materialized in the marketplace. Sun Microsystem's service provider interface (SPI),
on the other hand, has been considerably more successful in this regard—encouraging the
creation of replaceable components in a handful of technology areas, including cryptographic
service providers, naming and directory services, and database connectivity. Additional SPIs
are also being developed (or matured) for printing services, XML parsing and other

technologies.

This paper examines the characteristics of Java's SPI, analyzes why SPIs have generated a
market of reusable components while standard component models have not, and considers

what value (if any) these other component models hold over the use of SPIs.

This document is organized into the following sections:

Section 2: a definition of replaceable components with a focus on possible motivations
for replacing a software component.

Section 3: a very short overview of existing component models.

Section 4: four examples of replaceable components and service provider interfaces that
are specified by Sun

Section 5: a high-level comparison of the four examples from section 4

Section 6: conclusion

® JavaBeans and Enterprise JavaBeans (EJB) are registered trademarks of Sun Microsystems.

For the purpose of this document, COM includes Microsoft's component technologies Distributed
Component Object Model (DCOM) and COM+.

CMU/SEI-2002-TN-009

CMU/SEI-2002-TN-009

2 Replaceable Components

A replaceable component is one for which another component can be substituted without
substantial modification to the new component or the existing system.2 In considering a
component model for replaceable components, it is necessary to first understand the
motivations for supporting replaceable components. This understanding is necessary before a

replaceable component model can be defined or recognized. The following questions

promote this understanding:

• Is it necessary or useful to reinstall a component that has already been replaced?
By this we mean a scenario analogous to lenses for photo cameras. A user has replaced
component A with component B in a software system. Is it then necessary or useful to
keep component A in store and replace component B again with A later on? In this case A
and B are used as alternatives in specific situations.

• Should components be replaceable by the end user of the system? By the system
administrator or by the system developer or maintainer?

• Must components be replaceable at runtime?

In the following sections we draw parallels between physical systems and software systems
in an attempt to expose the motivations for supporting replaceable components.

2.1 Physical Systems
The idea of replaceable components has obvious physical system parallels. Consumer
products such as automobiles, vacuum cleaners, stoves, and refrigerators all contain
replaceable components. For the most part, these products are engineered with replaceable

components because

• It is costly to replace the overall system.

• Some system components tend to wear and break before other components.

• It is economical to replace failing parts when compared to replacing the entire system.

Electronic products such as cameras, stereos, and computers use replaceable parts not only
because these components can fail but also to modify or enhance the functionality of these
systems. For example, a photographer may wish to replace a 50mm camera lens with a

2 A degenerate case exists when the new component is a modified version of the original component.
Typically, this case is considered an upgrade and not a replacement. To be considered fully
replaceable, substitute components should be available from a vendor other than the developer of
the original component.

CMU/SEI-2002-TN-009 3

telephoto or wide-angle lens. Similarly, a computer user may decide to upgrade to a higher
resolution monitor, or a music enthusiast may decide to upgrade a speaker system.

Another reason many consumer products have replaceable components is for flexibility in
manufacturing. Systems with replaceable components can be easily reconfigured for different

price points by selecting components of varying functionality, quality, and cost.
Manufacturers can also incorporate different components when a principal supplier is not

able to meet a need.

In summary, the reasons for replacing components in physical systems include

• replacing failing components

• enhancing or modifying system functionality

• providing manufacturing flexibility

2.2 Software Systems
While it is interesting to explore physical system parallels, it is often dangerous to draw
analogies between software and hardware components since each class of component has
significantly different qualities. As a result it is necessary to consider each reason in turn to

determine if the analogy holds.

The first reason, to replace failing components, immediately appears to break the physical
systems analogy. Unlike fan belts in automobiles, software components are not subject to
failure from wear and tear. However, fielded components may eventually become obsolete,
as their environment changes around them. Platform, operating system, and middleware
upgrades (as well as upgrades to other components of the system) may make it necessary to
replace an existing component. The motivation for replacing the software component is often
the same as the motivation for replacing a failing part—simply to maintain the existing

system's functionality.

The principal drivers in replacing a "failing" software component are cost and transparency.

In particular, replacing the component should not cause the redevelopment or addition of a
significant amount of code in the existing system, or require the new component to be
modified in any way. This is typically accomplished by obtaining a more recent version of
the product from the vendor, either through a maintenance contract or a new purchase. In this
case, support for replaceable components exceeds our requirements—it is sufficient for the
vendor to provide an upgrade path. There are occasions, however, in which the component
vendor is no longer developing new versions of the product. In these cases a replaceable

component is a decisive benefit.

The second reason given for replacing a component is to enhance or modify the functionality
of a system. In the case of a camera, different lenses may be attached to a camera for

CMU/SEI-2002-TN-009

different purposes. All share a standard interface with the camera, and can communicate
information such as the/stop and shutter speed. There are tradeoffs involved, however, in

the selection of a lens. A telephoto lens may provide for greater magnification but require
additional lighting. As a result, no single lens provides the optimal set of qualities for all

situations.

From a user perspective, being able to replace the lens has the advantage of changing the
functionality of the camera without significantly changing the size or weight. If size and
weight were not an issue, for example, wouldn't it be better to have several lenses attached to
the camera and simply rotate a wheel to use a different lens? This would allow all of the

lenses to be available all of the time.

An example of a software component is a piece of software that provides an encrypted
communications channel. Different encryption components may provide the same basic
functionality but differ in quality of service (for example, encryption methods, key lengths, or
throughput). So why would we want to replace these components rather than simply add new
ones? One reason is again size, in memory, and on disk. If size were not an issue, a software
solution such as "add-ins" would be more appropriate—allowing us to extend, rather than
replace, the capabilities of an existing tool or product. There are also situations in which an
organization or user simply has no need for multiple options, but needs to select an option
that is compatible with existing systems or corporate policy. Replaceable components are
well suited to each of these situations. Another even more important reason to replace this
type of component is security. If a specific encryption algorithm can no longer be considered
sufficiently secure, this algorithm should be removed from the software system to prevent

users from inadvertently choosing this algorithm.

The third reason provided for supporting replaceable software components is flexibility in
manufacturing. Software, of course, is not manufactured in the same sense as hardware
systems, yet some similarities with software development remain. In particular,
manufacturers may tum to an alternate supplier to reduce cost, incorporate a higher quality
component, or because the original supplier could not supply the component in sufficient
quantity. Unlike hardware components, software is extremely simple to replicate, and having
a sufficient supply is never an issue. However, software component suppliers may
discontinue a component or go out of business. In this case, the continuing supply of new
versions of the software is threatened. Without this continuing supply of new component
version, the long-term maintainability of the system becomes threatened, requiring the

replacement of the original component.

The use of replaceable components to provide flexibility in manufacturing also has some
interesting parallels in software product lines [Clements 01]. Support for replaceable
components may lead to the development of applications that can be more quickly

customized to a particular situation.

CMU/SEI-2002-TN-009

2.3 Component Model Properties
With the principal motivations for replacing components identified, it is possible to answer
the questions posed earlier concerning the properties of a replaceable component model.

The first question is "Is it necessary or useful to reinstall a component that has already been
replaced?" The answer depends at least in part by what we mean by "replaced." In
maintaining a system that uses multiple components, the replacement of a component or a
tool (such as a compiler) is always treated as a major risk to the reliability, functionality and
performance and other qualities of the system. Normally, a configuration branch is created in
which the new component is introduced and any necessary work to integrate the replacement
component is performed. Once the integration is completed, significant effort is exerted to
revalidate the operation of the overall system. Eventually, the configuration management

board will examine the evidence to determine if the component replacement has been

successful, and if so, promote the configuration branch containing the replacement

component. In answering this first question, it is assumed that the component is not

considered to be replaced until this promotion occurs.

We have not identified "usefulness of reinstallation" as a motivation for replacing
components nor as a requirement for a replaceable component model. Obsolete components
or components with diminished functionality are unlikely to be reinstalled. Product lines
normally start with a base system that is then customized in a particular direction. Each
customization represents a separate evolutionary branch, so while one component may be
installed in one branch while a different component is installed in a different branch, it is
unlikely that an already-replaced component would be reinstalled in the same product line
branch.

The second question is "Who should replace components? The end-user of the system, the
system administrator, or the system developer or maintainer?" and the third question is "Must
components be replaceable at runtime?" None of our motivations for replacing components
suggests that either the system administrator or end-user of the system would need to replace
components. In all cases, these changes could be made by the system developer and pushed
out to the end-users of the system. Similarly, there is no real requirement for components to
be replaced at runtime. Of course, a component model that allowed end-users to replace
components at runtime would be preferable to one that did not, but this should not be
considered a necessary condition of a component model that supported replaceable

components.

While there is no requirement for end users to replace components at runtime, there is a
requirement that the replaceable and replacing components share a similar, if not identical set
of interfaces. Unless this is true, modifications will be required to the existing system or to
the new component to resolve the mismatch, preventing simple replacement. It is often
permissible for the new component to add interfaces, as long as the legacy interfaces are fully
supported. It is also important to realize that non-functional "interfaces" such as memory

CMU/SEI-2002-TN-009

usage and latency may require maintenance for the system to continue to function properly

after the replacement component has been installed.

CMU/SEI-2002-TN-009

3 Component Models

Component models such as Enterprise JavaBeans, JavaBeans, and Component Object Model
(COM) have not stimulated a marketplace of replaceable components. For the most part, this
is because these component models are designed to be general and support the development
of a broad range of components. In this section we provide some background on Enterprise
JavaBeans, JavaBeans, and COM and describe what these component models do (or do not

do) to support the development of replaceable components.

3.1 Enterprise JavaBeans
Enterprise JavaBeans (EJB) provides a component model for server-side components that are

typically transactional and often need to be secure. As a result, the component model
integrates transactions and security services into the framework, allowing these capabilities to

be easily supported by the system.

Enterprise beans are required to provide certain interfaces, but these interfaces exist largely to
support life-cycle management. The bean provider defines the functional Application
Program Interface (API) exported by the enterprise bean. The functionality supported by an
enterprise bean is not constrained by the EJB specification, and not restricted by the EJB

server.

There exists the possibility that independently developed specifications define APIs for
replaceable enterprise beans, but these fall outside of the EJB specification. Beyond
eliminating the potential for architectural mismatch between enterprise beans (and between
enterprise beans and EJB servers) the EJB component model does little to support the

development of replaceable components.

3.2 JavaBeans
The JavaBeans component model is primarily used for developing graphical user interface
(GUI) components and controls. The three most important features of a JavaBean are the set
of properties it exposes, the set of methods it allows other components to call, and the set of

events it fires.

Properties are named attributes associated with a bean that can be read or written by calling
appropriate methods on the bean. The methods a JavaBean exports are simply Java class
methods that can be called from other components or from a scripting environment. Events

CMU/SEI-2002-TN-009

provide a way for one component to notify other components that something interesting has
happened. Under the event model an event listener object can be registered with an event

source. When the event source detects that something interesting happens it calls an

appropriate method on the event listener object.

The JavaBeans specification imposes no interface restrictions on individual JavaBeans, but
simply defines a mechanism for integrating JavaBeans, and for accessing their properties,

methods, and events from integration tools (such as a GUI builder). Because of this,
JavaBeans does not impose sufficient interface constraints to support a replaceable

component.

3.3 COM
COM is a binary compatibility specification and associated implementation that allows
clients to invoke services provided by COM-compliant components (COM objects). Services
implemented by COM objects are exposed through a set of interfaces that represent the only

point of contact between clients and the object.

COM defines a binary structure for the interface between the client and the object. This
binary structure provides the basis for interoperability between software components written
in arbitrary languages. As long as a compiler can reduce language structures down to this
binary representation, the implementation language for clients and COM objects does not
matter—the point of contact is the runtime binary representation. Thus, COM objects and
clients can be coded in any language that supports Microsoft's COM binary structure.

Similar to EJB and JavaBeans, COM is a general component model and makes no attempts to
define specific functional interfaces that can be used to build replaceable components.

CMU/SEI-2002-TN-009

4 Service Provider Interfaces

The service provider interface is a mechanism used by Sun in the development of Java class

libraries and standard extensions to the Java programming language. SPI has not been
promoted by Sun as a component model, but does exhibit some interesting properties that
lead to the development of replaceable components. SPIs have been used by Sun in the
development of database connectivity, cryptographic service providers, and naming and
directory services. The Java Application Program Interface for XML parsing also includes a

"plugability" layer that, while not described as a SPI, provides a similar capability.

This section of this paper examines some SPIs in detail. The next chapter examines patterns
in the various SPIs and contrasts SPIs with the component models already discussed.

Implementation Background. The implementation of SPIs is based on abstract classes and
Java interfaces. The Java Naming SPI (j avax. naming. spi), for example, contains a
number of interfaces that must be implemented by the service provider. A Java interface
consists of a set of constant definitions and method declarations without implementations
(abstract methods). Interfaces are implemented by classes, and each class can implement
multiple interfaces. Variables in the end-user application are declared using the interface data
type. These variables can then reference any object implementing that interface, and any
methods defined in the interface can be accessed. For example, a variable of type Context
can be used to invoke any methods defined by the Context interface on any object,

provided by any service provider, that implements the interface.

This use of interfaces allows the Java program to invoke methods on an object whose
implementing class is not known at compile time. At runtime the Java class loading
mechanism is used to dynamically locate and load classes that implement the SPI.

In addition, the service provider interfaces make heavy use of factory methods and factory
classes to instantiate implementation classes in the service provider that are not known during

compilation of a Java program.

4.1 Data Access with Java Database Connectivity
The Java Database Connnectivity (JDBC) Data Access API provides Java applications with
access to persistent data sources. Originally designed to provide connectivity only to SQL
databases, it has evolved to also include other forms of tabular data, such as spreadsheets and
flat files. Java applications use the JDBC API to connect to data stores, store and retrieve data

via SQL statements, and to access database metadata.

10 CMU/SEI-2002-TN-009

The JDBC architecture consists of an API that can be used by Java applications—to access a
database, for example. A JDBC driver provides the implementation of the JDBC API. These
JDBC drivers enable the actual communication with a database. Drivers are provided by most
database vendors and as third-party products. The details of the driver's implementation and
the communication mechanism are specific to the driver and the underlying database.

The introduction of JDBC as a common interface to SQL databases is an early attempt to
define a common, standardized Java interface to a service that exists in very different
implementations. Although the specification does not mention the term service provider

interface explicitly, the set of interfaces that are implemented by a driver provides effectively

the same capability as SPIs referenced in later specifications.

The JDBC specification distinguishes the following four general categories of drivers:

1. Type 1 drivers implement the JDBC API as a mapping to another data access API, such
as Open Database Connectivity (ODBC). Drivers of this type are generally dependent on
a native library, which limits their portability. The JDBC-ODBC Bridge driver is an
example of a Type 1 driver.

2. Type 2 drivers are written partly in the Java programming language and partly in native
code. These drivers use a native client library specific to the data source to which they
connect. Again, because of the native code, their portability is limited.

3. Type 3 drivers use a pure Java3 client and communicate with a middleware server using
a database-independent protocol. The middleware server then communicates the client's
requests to the data source.

4. Type 4 drivers are pure Java and implement the network protocol for a specific data
source. The client connects directly to the data source.

Figure 1 shows a Type 4 driver on the left and a Type 3 driver on the right.

"Pure Java" refers to programs that only rely on the documented and specified Java platform, that
is, no native methods and no external dependencies aside from the Java Core APIs. Sun provides a
certification process to ensure that code is in fact 100% Pure Java.

CMU/SEI-2002-TN-009 11

Java Applet/
Application

JDBC API

JDBC Driver
Manager of

Datasource Object

Figure 1: The JDBC Architecture Consisting of an API and a JDBC Driver

JDBC functionality is divided into a set of basic requirements, the j ava. sql package, and
the j avax. sql package. The basic requirements include a set of general features that a
compliant JDBC implementation must support, such as Entry Level SQL92, transactions and
access to all relevant database metadata. The j ava. sql package contains the set of core
interfaces that represent specific features all JDBC driver implementations must support and
additional, optional interfaces that should be supported if the underlying database supports
the corresponding feature. The j avax. sql package contains interfaces that represent
optional, advanced features that may or may not be supported, such as

• connection and statement pooling

• Java Naming and Directory Interface (JNDI) support through data sources

• access row sets as JavaBeans

• distributed transactions

Replaceable Components. The packages j ava. sql and j avax. sql of the JDBC API
contain 12 class implementations and 31 interfaces that must be implemented by the driver
developer. Most of these interfaces are partially or completely optional. This means that a
driver implementation of a method in an optional interface may simply throw an exception.
Java applications use a connection object to access a data store. Connectors can be obtained
using the driver manager that works with one (or more) implementations of the driver
interface or, preferably, by interacting with a data source implementation.

Working with the driver manager requires that the Java application first load the driver by
instantiating and initializing a Class object for the JDBC driver's implementation of the
driver interface. This implementation class is required to register an instance of itself with the

driver manager in a static initializer that is called when the driver is loaded. The Java

12 CMU/SEI-2002-TN-009

application then uses the driver manager static "get connection" method to obtain a database

connection. The code for doing this follows.

// Load the driver and initialize it
// oracle.jdbc.OracleDriver implements Java.sql.Driver
Class.forName("oracle.jdbc.OracleDriver");

// Arguments for the database connection
String url = "jdbc :<vendor-specific string that identifies the
database>";

// Get a connection
Connection con = DriverManager.getConnection(

url, "user", "password");

With this method, multiple JDBC drivers can be loaded simultaneously. In addition, as part of
its initialization, the driver manager pre-loads all driver classes referenced in the
jdbc. drivers system property. This allows a user to customize the JDBC Drivers used by
their applications.

j dbc . drivers=com. db. DbJdbcDriver: com. xyz . XyzDriver

To allow the driver manager to select the appropriate driver for a database URL, the driver
interface defines an "accepts URL" method that expects a URL as input parameter and
returns a Boolean value. In this method the driver implementation checks whether it can
handle the passed URL and indicates this to driver manager by returning true or false
respectively. The "get connection" method queries registered drivers and uses one that can
handle the passed URL.

The JDBC driver is replaced by replacing the class name of the driver implementation class.
To reliably replace a driver at runtime, the previous driver can be de-registered with the
driver manager. Replacing JDBC drivers is limited by the fact that most interfaces are
optional. This makes it necessary to conduct a detailed comparison of supported features
before using a different driver.

The second option for a Java application to obtain a connection to a data store is to retrieve a
data source object that has been registered with a naming or directory service. This object
represents a physical data source (for example, a database) and allows the Java application to
get a connection object for this data source.

In this scenario the Java application developer has no influence at all on which JDBC driver
is used for the database connection. This choice is made outside the application when the data
source together with the appropriate JDBC driver is registered with the directory service.
Only the name under which it is registered in the directory service must be known to the
application, as the following illustrates.

CMU/SEI-2002-TN-009 13

// Get the initial naming context
Context ctx = new InitialContext();

// Arguments for the database connection
String dsName = "jdbc/DB";

// Get the data source and connection
DataSource ds = (DataSource) ctx.lookup(dsName);
Connection con = ds.getConnection("user", "password");

This method is used in Java 2 Enterprise Edition (J2EE) application servers to specify data
sources for Enterprise JavaBeans and Web applications. In this case, it is particularly
important that either the Java application makes no assumptions about the features of the data
source, or that the choice of databases and JDBC drivers is restricted to those that provide a
specific set of capabilities (for example, support for distributed transactions).

Locating JDBC Drivers. JDBC driver implementations are usually packaged as Java

archives. A Java application loads these Java ARchives (JAR) files using either the default or

a customized Java class loading mechanism. The default Java class loader is supplied with a

list of directories and jar files (the class path) that indicates where and in which order to

search for class files on a file system.

Service Provider Interface. The service provider interface of the JDBC API is the set of all
interfaces that a JDBC driver can implement. It is identical to the set of interfaces that are
available for use in a Java application. The database metadata interface contains variables and
methods that permit the application to determine exactly which SQL features are supported.

4.2 Java Cryptography Extension
The Java Cryptography Extension (JCE) contains classes and interfaces for cryptographic
services, such as encryption, key generation, key agreement, and Message Authentication
Code (MAC) generation. While the JCE4 was previously an extension to the Java platform, it

has been integrated with Sun's Java Development Kit (Java 2 SDK) version 1.4.

Each cryptographic service is represented in the JCE by a Java class that provides access to
the service, but does not include a concrete implementation of this service. These classes are
called "engine classes" in the JCE specification. The cipher class, for example, provides
access to the functionality of arbitrary encryption algorithms. Java applications use only the
engine classes to access a cryptographic service. The following code snippet shows how a

Java application may use DES encryption:

Detailed information about the various releases of the Java Cryptography Extension is available at
http://java.sun.com/products/jce/

14 CMU/SEI-2002-TN-009

// Generate a default length key using key generator
KeyGenerator g = KeyGenerator.getlnstance("DES");
SecretKey k = g.generateKey();

// Get DES implementation and initialize for encryption
Cipher c = Cipher.getlnstance("DES");
cipher.init(Cipher.ENCRYPT_MODE, key);

// Will transparently encrypt data written to stream
CipherOutputStream s = new CipherOutputStream(

someOutputStream, cipher);

A cryptographic service provider that is plugged into the JCE implements underlying
algorithms; for example, those used for encryption and key exchange.

Replaceable Components. The JCE framework does not specify which algorithms a
cryptographic service provider must implement. Instead, it prescribes a mechanism that
allows providers to announce names and properties of algorithms they implement. Typically,
multiple providers that may implement different algorithms will be installed at the same time
in a given preference order. The Java application can then request a specific algorithm or
specific encryption strength, and the JCE chooses the appropriate implementation, if one is

available.

To accomplish this, each provider must be implemented as a subclass of Java security
provider, the provider's "master class," which encapsulates a set of properties (name-value
pairs). The constructor of this subclass registers the provider's name and sets the values of
various properties that indicate which algorithms the provider implements and the class name
of the algorithm. A provider for the previous example contains the following code.

// Set encryption algorithm implementations
put("Cipher.DES", "com.acme.DESCipher") ;

// Set key generator implementations
put("KeyGenerator.DES", "com.acme.DESKeyGenerator");

When a Java application wants to use an algorithm, it calls the "get instance" method to get
the name of the engine class (for example, "cipher") with the name of an algorithm as a
parameter (for example, "DES"). This method constructs the property name and then queries
installed providers in preference order for a matching property name. If such a property is
found, the method creates an object of the corresponding class and returns it to the

application for further use.

Alternatively, an application can request an implementation from a specific provider by
passing the provider name as an additional parameter. A list of all installed providers is
available through the Java security class. This class also has methods to add and remove
providers, and to rearrange the preference order of providers.

CMU/SEI-2002-TN-009 15

In the case of cryptographic services, it is preferable that providers not be replaceable at
runtime without user control. It is essential that the user approves the providers available to

an application.

Security Requirements. As cryptographic services are used to protect sensitive data,
evidence must be provided that users can trust a service provider implementation. In addition,
mechanisms must be present to prevent Java applications and especially Java applets from
tampering with the installed providers. This should-be possible without sacrificing the
flexibility of a plug-in mechanism. This leads to some interesting consequences for the JCE

service provider interface:

• A JCE provider must be signed using a code-signing certificate issued by a "trusted" JCE
Code Signing Certification Authority (currently Sun and IBM only). When a provider's
implementation of a JCE service is instantiated, the JCE framework checks that the JAR
archive containing the implementation is signed and verifies the signature. This prevents
arbitrary, unapproved providers from being plugged into the JCE.

• A provider should follow several recommendations that prevent tampering with its
implementation. The recommended measures include self-integrity checking and using
Java language features to prevent applications to instantiate provider classes directly.

• Operations for manipulating the list of installed providers are privileged and as such
subject to access control according to a security policy.

• The JCE consists of abstract classes with protected methods instead of interfaces. This
prevents applications from circumventing an engine class and directly accessing the
provider's algorithm implementation.

In addition, the JCE framework includes a means to reliably limit the cryptographic strength
of algorithms available to applications to comply with U.S. export restrictions and with

import restrictions of other countries.

Installing Cryptographic Service Providers. The first step in installing cryptographic
service providers is to place the provider JAR file in the file system and to modify the class
path, if necessary. In addition, the provider's master class must be added to the list of
approved providers in the j ava. security text file that is part of the Java runtime
environment. For each provider, this file has a statement that specifies the preference order n

and the name of the provider's master class.

security.provider.n=com.acme.security.Masterclass

The JCE framework automatically registers all providers that have an entry in this
configuration file. If an application must register a provider dynamically using the above-
mentioned Security class, this can only be done by code that is granted the following

permission.

java.security.SecurityPermission
" insert Provider. <provider name> "

16 CMU/SEI-2002-TN-009

Additional permissions must be granted whenever a cryptographic service provider is used in
the presence of a security manager, which is typically the case for applets or applications that

use remote method invocation.

If two or more installed providers implement the same algorithm, the JCE framework will
choose the implementation of the provider with the highest preference order.

Service Provider Interface. The service provider interface for cryptographic service
providers includes a set of abstract classes in the packages Java. security and
j avax. crypto and sub-packages of these. For each engine class Engine in these
packages, there is a corresponding abstract class named EngineSpi that must be subclassed
by a cryptographic service provider.

4.3 Java Naming and Directory Interface
The Java Naming and Directory Interface (JNDI) is a standard extension to the Java platform,
providing Java applications with a single interface to heterogeneous enterprise naming and
directory services.

The JNDI architecture consists of an application programming interface and a service
provider interface. Java applications use the JNDI API to access a variety of naming and
directory services. The SPI enables a variety of naming and directory services to be "plugged
in," allowing the Java application using the JNDI API to access their services as shown in
Figure 2.

Java Application

JNDI API

Naming Manager

JNDI SPI

LDAP DNS NIS NDS RMI CORBA
JNDI

Implementation
Possibilities

Figure 2: The JDNI Architecture Consisting of Both an API and an SPI

To use the JNDI, you must have the JNDI classes and one or more service providers that map
the JNDI API to actual calls to the naming or directory server. The Java 2 SDK, version 1.4,
includes four service providers for the following naming/directory services:

• Lightweight Directory Access Protocol (LDAP)

CMU/SEI-2002-TN-009 17

• Common Object Request Broker Architecture (CORBA) Common Object Services
(COS) name service

• Java Remote Method Invocation (RMI) Registry

• Internet Domain Naming System (DNS)

Service providers exist for other naming and directory services as well, including the remote
method invocation registry, network information service (NIS), directory services markup
language (DSML), Novell Directory Service (NDS), file system, and the Windows Registry.

But how does the SPI support replaceable components?

Replaceable Components. Before performing any operation on a naming or directory
service, an initial context must be acquired to serve as the starting point into a namespace.
The LDAP service must be able to determine which service provider to use to create the

initial context. This is accomplished by creating a set of environment properties to which the
name of the service provider class is added. For example, if you are using the LDAP service

provider from Sun Microsystems, then your code appears as follows.

Properties env = new Properties();
env.put(Context.INITIAL_CONTEXT_FACTORY,

"com.sun.jndi.ldap.LdapCtxFactory");

Once set, the environment is passed as an argument to the InitialContext ()

constructor to create the initial context:

Context ctx = new InitialContext(env);

By simply specifying a different class as the initial context factory, a different service
provider (component) is installed—supporting replaceable components that can be replaced

dynamically at runtime.

Federation. In addition to supporting replaceable components, JNDI also has a capability
that more closely resembles the add-ins discussed earlier in this paper. Multiple service

providers can be used by a single application in conjunction to support composite
namespaces. Composite namespaces incorporate multiple naming systems, as shown in
Figure 3. In this case, DNS is used as the global naming system. This name space is then split

divided between NDS and JJDAP.

18 CMU/SEI-2002-TN-009

LDAP

"user
objects

Figure 3: A Composite Namespace

A composite name may span multiple namespaces, that is, it consists of one or more
compound names, each belonging to a single namespace. The components of a composite
name are separated by a forward slash ("/") character. The context implementation must
determine which part of the name is to be resolved in its context and pass the rest onto the
next context. This may be done syntactically by examining the name, or dynamically by
resolving the name. The resolution of a (multi-component) composite name proceeds from
one naming system to the next, with the resolution of the components that span each naming
system typically handled by a corresponding context implementation. From a context
implementation's point of view, it passes the components for which it is not responsible to the
context implementation of the next naming system.

There are several ways in which the context implementation for the next naming system may
be located. It may be located explicitly through the use of a junction, where a name in one
naming system is bound to a context (or a reference to a context) in the next naming system.
For example, with the composite name cn=f s, ou=eng/lib/xyz . zip, the LDAP name
cn=f s, ou=eng might resolve to a file system context in which the name lib/xyz . zip

could then be resolved.

Alternately, the next naming system may be located implicitly. This can be done statically in
the context implementation, or dynamically by the framework. For example, with the
composite name ldap. sei . emu. edu/cn=f s, ou=eng, the DNS name
ldap. sei . emu. edu might name a DNS entry. If the DNS Context implementation cannot

determine the next naming context, it constructs an exception that contains the result of the
resolution so far, and the unresolved rest of the composite name. The NamingManager
class in the JNDI framework contains a method getContinuationContext that finds
an appropriate "next" context in which the resolution can continue. A corresponding method

is provided for accessing a directory service.

CMU/SEI-2002-TN-009 19

How ever the next naming system is located, the remaining portion of the composite name is

handed to the context implementation to resolve.

Locating Service Providers. Let us review what we have learned so far. Each service
provider implements a context factory object that supports JNDI operations with a name
space. An initial context can be established using the initialContext () constructor.
Name spaces can be federated, using composite names and a variety of mechanisms for
locating the next context. The only outstanding question is "How does JNDI know how to
locate service providers that could potentially provide the context within which a name can

be resolved?"

The answer is relatively simple. Each deployable component is responsible for listing the
factories that it exports. Each service provider has an optional resource file that contains

properties specific to that provider. The name of this resource is

[prefix/]jndiprovider.properties

When an application is deployed, it will generally have several code base directories and
JARs in its class path. Similarly, when an applet is deployed, it will have a code base and
archives specifying where to find the applet's classes. JNDI locates all application resource
files named jndi . properties in the class path. These files are searched for lists of JNDI
factories, which are concatenated into a single colon-separated list. For example, if the
java. naming. factory. object property is found in three jndi .properties
resource files, the list of object factories is a concatenation of the property values from all

three files.

Service Provider Interface. The service provider interface to be implemented by a JNDI
provider consists of interfaces only. The interfaces that support plug-in of JNDI providers
into the JNDI framework (mostly factory classes) are grouped in the j avax. naming. spi
package. Additional interfaces that must also be implemented provide Java applications with
access to the providers' services. These are defined in the javax. naming package.

4.4 Java API for XML Processing
The Java API for XML5 Processing (JAXP) provides basic support for parsing and
manipulating XML documents through a standardized set of Java Platform APIs. JAXP does
not explicitly claim to provide a SPI, but nonetheless, the interface provides a similar (if not

identical) capability.

The extensible Markup Language (XML) is the metalanguage defined by the World Wide Web
Consortium (W3C) that can be used to describe a broad range of hierarchical markup languages. It is
a set of rules, guidelines, and conventions for describing structured data in a plain-text, editable file.

20 CMU/SEI-2002-TN-009

JAXP defines plugability interfaces for SAX6, DOM7, and XSLT8. The plugability interfaces
to SAX and DOM allow access to the functionality defined in the SAX 2.0 API9 and DOM
Level 2 specification10 respectively, while allowing the choice of the implementation of the
parser. Depending on the needs of the application, JAXP provides developers the flexibility
to swap between XML processors (such as high-performance vs. memory conservative
parsers) without making application code changes. The plugability interface for XLST allows
an application programmer to obtain a transformer object that is based on a specific XSLT

style sheet.

All three JAXP plugability interfaces are implemented in a similar fashion, so any one of
them is representative of the plugability interface. The SAX Plugability interface is as good

an example as any to consider.

SAX Plugability. The SAX plugability classes allow an application programmer to provide
an implementation of the default handler API to a SAX parser implementation to parse XML

documents. As the parser processes the XML document, it will call methods on the provided

default handler.

To obtain a SAX parser instance, an application programmer first obtains an instance of a
SAX parser factory. The SAX parser factory instance is obtained via the static new instance

method of the SAX parser factory class.

The new instance method uses the following ordered look-up procedure to determine the

SAX Parser Factory implementation class to load:

1. Use the j avax. xml. parsers . SAXParserFactory system property.

2. Use the properties file lib/jaxp.properties in the JRE directory. This configuration file is
in standard Java properties format and contains the fully qualified name of the
implementation class, with the key being the system property defined above.

3. Use the Services API (as detailed in the JAR specification), if available, to determine the
class name. The Services API will look for the class name in the file META-INF/
services / j avax. xml. parsers. SAXParserFactory in jars available to the
runtime.

4. Use the Platform default SAX Parser Factory instance.

6 The Simple API for XML (SAX) is a public domain API that provides an event-driven interface to
the process of parsing an XML document. An event-driven interface provides a mechanism for
"callback" notifications to application's code, as the underlying parser recognizes XML syntactic
constructions in the document.

7 The Document Object Model (DOM) is a set of interfaces defined by the W3C DOM Working
Group. It describes facilities for a programmatic representation of a parsed XML (or HTML)
document.

8 The XSL Transformations (XSLT) describes a language for transforming XML documents into other
XML documents or other text output defined by the W3C XSL Working group.

9 The SAX 2.0 API is located at http://www.saxproject.org.
10 The DOM Level 2 Core Recommendation is located at http://www.w3.org/TR/2000

/REC-DOM-Level-2-Core-20001U3/.

CMU/SEI-2002-TN-009 21

5 SPI Comparison

There are similarities and differences in capabilities that can be noted between the SPIs
examined in this report." For example, the JDBC API provides a uniform interface to
various data sources, including SQL databases. A JDBC driver serves as a connector between
a Java application and some data storage technology. Data storage technologies vary widely
with regard to supported features and support of standards. Many database vendors include
features that are unique to their products or provide extensions to standards. In addition,

JDBC driver implementations for the same database but by different vendors do not

necessarily provide the same level of access to the capabilities of this database. Since

database access is a critical factor for an application's performance, the JDBC API cannot

restrict drivers to some least common denominator.

Similarly, the JNDI connects Java applications to external services, but these services have
interfaces and features that are well defined compared to database systems. This is especially
true for implementations of the LDAP standard. In addition, the number of different naming
and directory services is limited, and the feature set does not vary as widely as it does for
databases. An important feature of the JNDI API is the support for federation that provides
Java applications with a unified view of an environment that integrates different directory and

naming services.

JCE follows a different model than both the JDBC and JNDI. JCE is not concerned with
connecting technologies but with providing a plug-in mechanism for algorithms. These
algorithms provide implementations of pre-defined classes of cryptographic services.
Different providers may complement each other by supporting different algorithms or the

same algorithms with varying cryptographic strengths.

The JAXP API describes a similar plug-in mechanism, in this case for XML parsing and XSL
transformation services provided by a compliant parser or transformer. The JAXP API was
originally developed to repair deficiencies in the existing SAX and DOM industry standards.
These repairs include bootstrapping a DOM tree from an XML document and controlling
parser validation. The transformation part of the API has been added in the latest version for

completeness.

All four described SPIs meet the minimal conditions for supporting a replaceable component
model outlined earlier in this paper. In addition, they all support runtime replacement of

11 These differences are certain to exist and should not be considered a criticism, given that the SPI is
not a standardized component model, but more of a generic mechanism that has been used on
multiple occasions by Sun developers.

22 CMU/SEI-2002-TN-009

components by the end user of the system, through modification of system properties to

install a different service provider. The JDBC, JNDI, and JCE SPIs go beyond replaceable
components to support an add-in capability. In other words, multiple service providers can be
installed simultaneously with the correct service provider being invoked based on a database
URL, a composite name, or other factors described in this paper. JAXP has no need to
provide this capability (and does not) since a single XML parser is sufficient in almost any

case.

Table 1 summarizes the properties of the four evaluated examples:

Provider
replaceable at
runtime

Add-in of
providers

Explicit
SPI

Connector
mechanism

Plug-in
mechanism

JDBC V S ^

JNDI </ V V •

JCE </ V </ V

JAXP S V

Table 1: Properties of Different SPIs

5.1 Market
When considering the ability of a component model (or SPI) to generate a market for
replaceable components, it would be negligent not to look at the market each SPI has

generated at the time this report was written.

For JDBC there is a survey on Sun's Web site that lists available JDBC drivers together with
the supported specification version and the implemented optional features. The list contains
50+ vendors that offer 75+ products. The list of vendors includes almost all major database
vendors that offer drivers for their database products (usually for free). In addition, it also
contains third-party vendors that offer JDBC drivers for multiple databases, often with
integrated value-added features, such as encrypted connections or advanced monitoring

capabilities, for example.

The other SPIs have generated much smaller markets. There are about 10 JCE
implementations by about 10 vendors, including several open-source projects. For JNDI,
there are 10 products from 5 vendors, and for JAXP there are just 5 products from 3 vendors,
including the Apache Group that supplies 2 parsers and one transformer (crimson, xerces, and

xalan).

A number of reasons might explain why these SPIs have failed to create significant markets;
some of these result from the problem these SPIs address. This is most obviously the case for
JNDI because a JNDI provider essentially forms a bridge between two standards. Once an
implementation exists, there is no good reason to provide an additional one, as the existing

CMU/SEI-2002-TN-009 23

solution can be reused elsewhere without problems. The LDAP providers, for instance, that
are often shipped in connection with J2EE application servers, can be the same that are
included in Sun's Java runtime environment (for example, BEA Weblogic). Moreover, there
is not much opportunity for adding bells and whistles to a JNDI provider that would justify

the effort to market it as a separate product.

While this is certainly not the case for cryptographic service providers, encryption is a
complex subject, encumbered by country-specific export and import regulations.
Additionally, the requirement to have a cryptographic service provider implementation signed
via Sun or IBM sets an additional obstacle that might prevent software companies from

implementing JCE providers.

The number of JAXP implementations is similarly driven by market conditions. Freely
available products dominate the market for Java implementations of XML parsers and XSLT

processors. Since XML and XSLT are standards that do not permit vendor specific
extensions, the only potential advantage commercial offerings could have over the existing
offerings (apart from support) is performance. But if performance really is an issue, parsers
and processors not implemented in Java but in a compiled language such as C, for example,
may be the preferred option anyway.

In summary, the number of replaceable SPI components in each market area is commensurate
with the prevailing market conditions and not an indicator of the lack of suitability of the SPI

model.

24 CMU/SEI-2002-TN-009

6 Component Model Comparison

Component models such as Enterprise JavaBeans, JavaBeans and COM do little to support
the development of replaceable components. These component models impose interfaces on

components that allow them to be manipulated in a standard fashion by component
frameworks. However, these component models do not impose any kind of functional
interfaces on components that conform to the model, making it impossible to replace these

components without modification to the remaining system.

In many ways the service provider interface is a more effective mechanism for supporting
replaceable components than any of the standard component models. This is because each
SPI is focused on a particular functional area, and defines a common API that can support
that functional area while still allowing for variations in how the functionality is
implemented. Standard component models are meant to be more general and do not provide
this level of functional interface specification. This is not a criticism of these component
models. In fact, the major point of this paper may be that expecting these general component
models to generate a marketplace of replaceable components is unreasonable.

CMU/SEI-2002-TN-009 25

26 CMU/SEI-2002-TN-009

References

[Clements 01] Clements, Paul & Northrop, Linda. Software Product Lines. Boston,
Ma.: Addison-Wesley, July 2001.

[Comella-Dorda 97] Comella-Dorda, Santiago. Component Object Model (COM),

DCOM, and Related Capabilities.
<http://www.sei.cmu.edu/str/descriptions/com_body.html > (1997)

[Kruchten 98] Kruchten, Philippe. "Modeling Component Systems with the
Unified Modeling Language," in Proceedings of the 1998

International Workshop on Component-Based Software Engineering,
Kyoto, Japan, 1998. <http://www.sei.cmu.edu/cbs/icse98> (1998).

[Long 98] Long, F. & Seacord, R.C. "A Comparison of Component Integration
Between JavaBeans and PCTE," in Proceedings of the 1998
International Workshop on Component-Based Software Engineering
Kyoto, Japan, 1998. <http://www.sei.cmu.edu/cbs/icse98> (1998).

[Rajiv 01] Rajiv, Mordani; Davidson, James Duncan; & Boag, Scott. Java API
for XML Processing Version 1.1 Final Release, Sun MicroSystems,
February 2001. http://java.sun.eom/xml/jaxp/dist/l.l/
jaxp-l_l-spec.pdf> (2001).

[Sun 95] Sun Microsystems. JDBC Data Access API.
<http://java.sun.com/products/jdbc/overview.html> (1995-2002).

[Szyperski 98] Szyperski, C. & Vernik, R. "Establishing System-Wide Properties of
Component-Based Systems," Proceedings of OMG-DARPA-MCC
Workshop on Compositional Software Architecture. Monterey, Ca.,
January 1998.

[Szyperski 98] Szyperski, C. Component Software Beyond Object-Oriented
Programming. Boston, Ma.: Addison-Wesley and ACM Press, 1998.

[WallnauOl] Wallnau, K; Hissam, S.; & Seacord, R. Building Systems from
Commercial Components. Boston, Ma.: Addison-Wesley, July 2001.

CMU/SEI-2002-TN-009 27

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection ol information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

July 2002

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Replaceable Components and the Service Provider Interface

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

Robert Seacord, Lutz Wrage

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2002-TN-009

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Several popular component-based standards have emerged recently, including JavaBeans® and Enterprise
JavaBeans® from Sun Microsystems and the Component Object Model from Microsoft. These component models are
being adopted for use in software development, as they eliminate opportunities for architectural mismatch and are
supported by standard services. A highly touted property of component models is that they support the development of
replaceable components. Unfortunately, a robust, commercial marketplace of replaceable components has not been
established for any of these component models.

On the other hand, the properties of the Service Provider Interface (SPI), used in many Java language packages, have
resulted in the development of reusable components in several technology areas. Examples of successful SPI
packages include Java Database Connectivity, Java Cryptography Extension, Java Naming and Directory Interface,
and the Java Application Program Interface for XML Processing.

This technical note considers the motivation for using replaceable components and defines the requirements of
replaceable component models. It evaluates the properties of standard component models and the SPI approach that
affect their ability to support replaceable components.

14. SUBJECT TERMS

CBSE, Component-Based Software Engineering, Enterprise JavaBeans, JavaBeans,
EJB, COM, Component Object Model, SPI, Service Provider Interface

15. NUMBER OF PAGES

35

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

